
Misleading Performance Reporting in the Supercomputing Field

David H. Bailey

RNR Technical Report RNR-92-005

December 1, 1992

Abstract

In a previous humorous note, I outlined twelve ways in which performance figures for

scientific supercomputers can be distorted. In this paper, the problem of potentially mis-

leading performance repot'ting is discussed in detail. Included are some examples that

have appeared in recent published scientific papers. This paper also includes some pro-

posed guidelines for repor,,ing performance, the adoption of which would raise the level of

professionalism and reduc,. • the level of confusion in the field of supercomputing.

The author is with the Numerical Aerodynamic Simulation (NAS) Systems Division at

NASA Ames Research Cen_er, Moffett Field, CA 94035.

1. Introduction
Many readersmay haveread my previousarticle "Twelve Waysto Fool the Masses

When Giving PerformanceReportson Parallel Computers"[5]. The attention that this
article receivedfrankly hasbeensurprising[11].Evidently it hasstrucka responsivechord
amongmanyprofessionalsin thefield whosharemy concerns.Thefollowingis a verybrief
summaryof the "TwelveWays":

1. Quoteonly 32-bit performanceresults,not 64-bit results,and compareyour 32-bit
resultswith others'64-bit results.

2. Presentinnerkernelperformancefiguresasthe performanceof theentireapplication.

3. Quietlyemployassemblycodeandother low-levellanguageconstructs,andcompare
your assembly-codedresultswith others'Fortran or C implementations.

4. Scaleup the problemsizewith the numberof processors,but don't clearlydisclose
this fact.

5. Quoteperformanceresultslinearly projectedto a full system.

6. Compareyour resultsagainstscalar,unoptimized,singleprocessorcodeon Crays.

7. Comparewith anold codeon anobsoletesystem.

8. Basemegaflopsoperationcountson the parallel implementationinsteadof on the
bestsequentialimplementation.

9. Quoteperformancein termsof processorutilization, parallelspeedupsor megaflops
per dollar (peakmegaflops,not sustained).

10. Mutilate thealgorithmusedin theparallelimplementationto matchthearchitecture.
In otherwords,employ"algorithmsthat arenumericallyinefficientin orderto exhibit
artificially high megaflopsrates.

11. Measureparallel run times on a dedicatedsystem,but measureconventionalrun
timesin a busyenvironment.

12. If all elsefails, show pretty pictures and animatedvideos,and don't talk about
performance.

Somereadersof the "TwelveWays"haveinquiredwhetherthe article wasintendedto
bea criticismof parallelsupercomputervendorsor of the technologyof parallelcomputing
in general.It wasnot. This misunderstandingmay havebeenarisenfrom the fact that in
the copypublishedin Supercomputing Review, the word "scientists" in an introductory

paragraph was changed by the editors to "vendors" for unknown reasons. Instead, I wrote

the article out of conceri_ that the field of parallel supercomputing may lose credibility un-

less scientists themselve,, are more circumspect in reporting performance and in reviewing

the work of their colleag les.

The "Twelve Ways" article jocularly suggests deliberate attempts by scientists to mis-

lead their audiences. Clearly few, if any, who have employed one of these "techniques"

have done so with such dark motives. But this sort of material still looks unprofessional

and, if nothing else, has resulted in a great deal of confusion in the supercomputing field.

2. The Pressure for Reporting High Performance

Perhaps it was inevitable that this problem would arise in the field of parallel scientific

computing. For many y¢ars, parallel computers were almost exclusively the province of

theoretical computer science. In the mid 1980s, commercial parallel systems became avail-

able, but their performalLce ratings were a far cry from those of commercially available

vector supercomputers at the time. In the late 1980s, commercial parallel systems were

finally marketed with peak performance rates that equaled and even surpassed that of vec-

tor supercomputers. In response to these developments, a number of laboratories acquired

these systems, and their scientists began to implement serious, full-scale applications. In-

evitably, one of the first questions asked of these researchers was "How does your parallel

computer compare with a conventional supercomputer on this application?"

Thus, since about 198t_ scientists programming the parallel systems have been under

pressure to exhibit performance rates comparable to or exceeding those of conventional

supercomputers. This pre_,sure has increased in the last year or two as these same groups

of scientists have been called upon by their respective managements to justify the multi-

million dollar price tags that serious parallel supercomputers now command. In many

cases, aggressive long-range performance goals have been set by high-level managers that

will require rapid progres,_ for years to come. Looming budget cuts at large scientific

laboratories have added acditional pressure. At the very least, researchers feel obligated

to highlight experience with certain applications that are naturally well-suited for highly

parallel systems and thus achieve high rates, and to downplay more challenging applications

that for various reasons do not yet achieve high rates.

When this external pressure is added to the natural human tendency of scientists to be

exuberant about their own work, it should come as little surprise that some have presented

sloppy and potentially misleading performance material in papers and conference presen-

tations. And since the reviewers of these papers are themselves in many cases caught up

in the excitement of this new technology, it should not be surprising that they have tended

to be somewhat permissive with questionable aspects of these papers.

Clearly the field of super.:omputing in general and parallel computing in particular does

not do itself a favor by condoning inflated performance reports, whatever are the motives of

those involved. In addition to fundamental issues of ethics aJld scientific accuracy, there is a

real possibility that our field could suffer a serious loss of credibility if, for example, certain

instances are given prominent media coverage. At the very least, there is the possibility

that laboratory managers and even applications scientists will sour on parallel computing,

3

muchin the samewaythat theexpansiveclaimsandpromisesof the artificial intelligence
field in early yearshasled to the presentwidespreadskepticism.

Thereis anotherreasonto upholda high levelof forthrightnessand clarity in perfor-
mancereporting. In orderfor highlyparallelcomputersto achievewidespreada.cceptance
in the scientificcomputingmarketplace,it is essentialthat they deliver superiorperfor-
manceon a broadrangeof important scientificand engineeringapplications. Thusit is
my opinion, sharedby othersin the field, that the best way to insure that future par-
allel scientificcomputerswill be successfulis to provideearly feedbackto manufacturers
regardingtheir weaknesses.Oncethe reasonsfor less-than-expectedperform_ce rateson
certainproblemsareidentified, then vendorscanincorporatethe requiredimprovements,
both softwareand hardware,in the next generation.

In this paper, I will presenta numberof examplesof questionableperformancereport-
ing that haveappearedin publishedpapersduring the past few years. I haverestricted
this study only to articlesthat haverecentlyappearedin refereedscientificjournals and
conferenceproceedings.I havenot includedpressreleases,marketingliterature, technical
reports,verbalpresentationsor papersI havereadonly asa referee.

My only purposein citing theseexamplesis to provideconcreteinstancesof the perfor-
manceissuesin question.I donot wishfor thesecitationsto be misconstruedascriticisms
of individual scientists,laboratoriesor supercomputermanufacturers. This is becauseI
personallydo not believethis problem is restricted to a handful of authors, laboratories
and vendors,but that manyof us in the field must shareblaine (seesection8). For this
reasonI have decidedto take the unusualstepof not including detailedreferencesfor
thesepapers,in order not to causethe authorsundueembarrassment.Thesereferences
areavailable,however,to reviewersor otherswith a legitimateneedto know. I suggest
that readerswholearnthe identitiesof theseauthorsusethis informationwith discretion.

3. Plots
Plots canbe effectivevehiclesto presenttechnicalinformation, particularly in verbal

presentations.Further,plots arein manycasesall that high-levelmanagers(suchasthose
with authority for computeracquisitions)havetime to digest. Unfortunately,plots can
alsomisleadanaudience,especiallyif preparedcarelesslyor if presentedwithout important
qualifyinginformation.

Figure 1 is a reconstructionof the final performanceplot from a paper describinga
defenseapplication [13].The plot comparestimings of the authors' nCUBE/10 codewith
timingsof a comparablecoderunningon a CrayX-MP/416. The plot appearsto indicate
animpressiveperformanceadvantagefor the nCUBEsystemon all problemsizesexcepta
smallregionat the far left.

However,examinationof the raw data usedfor this plot, which is shownin Table
1, givesa differentpicture. First of all, exceptfor the largestproblemsize(i.e. object
count), all data points lie in the small regionat the far left. In otherwords,most of the
two curvesshownare merelythe linear connectionsof the next-to-lastdata points with
the final points. Further, the Cray X-MP is actually faster than the nCUBE for all sizes

O

Figure 1:

,5 _-_

2.5

2

1.5

1

OLf ,
0 1000 2000-____a___ _ I I [L I r

3000 4000 5000 6000 7000 8000 9000 10000

Number of Objects

Timings of nCUBE/10 (lower) aaad Cray X-MP (upper) on a defense application

Table 1:

Total nCUBE Cray X-MP

Objects Run Time Run Time
20

40

80

160

990

9600

8:18

9:11

11:59

15:07

21:32

31:36

0:16

0:26

0:57

2:11

19:00

"3:11:50

Raw data for plot in Figure 1. * denotes estimate.

exceptfor the largestproblemsize. My personalview, sharedby severalcolleagueswho
haveseenthis graph,is that a logarithmicscalewouldhavebeenmoreappropriatefor this
data.

Other difficultiesare encounteredwhenone readsthe text accompanyingthis graph
andtable. First of all, the authorsconcedethat the runson the CrayX-MP/416 (a four
processorsystem)weremadeon a singleprocessor,andthat "the Crayversionof the code
hasnot beenoptimized for the X-MP". The authorsassert,however,that tuning "would
not beexpectedto makea substantialdifference".

Secondly,for the largest problem listed, the only one wherethe Cray fails to out-
perform the nCUBE, the CrayX-MP timing is by the authors' admissionanestimate,an
extrapolationbasedon a smallerrun. In the paper,as in Figure 1,the Craycurveleading
out to the last point is dashed,possiblyintendingto indicatethat this is anestimate,but
this featureis not explainedin either the captionor the text. Somereadersinterpret this
featureasmerelyat: indication of the regionwherethe nCUBE is faster.

To the authors' credit, they did includethe raw data, and they did clearly acknowl-
edgethe fact that the Craycodeis not fully optimizedand that the last Cray timing is
extrapolated. Thus it appearsthat the authorswereentirely professionalin the text of
their paper. But the readeris left to wonderwhat fraction of the audiencethat hasseen
this plot fully appreciatesthe detailsbehindit.

Figure2 is areconstructionof anotherperformanceplot from a paperdescribingafluid
dynamicsapplication [14].This plot comparestimings of the author's codesrunningon a
64K CM-2 with thoseof comparablecodesrunning on a one processorCray X-MP. The

two curves shown for each computer system represent a structured and at: unstructured

grid version of the code, respectively. As before, the plot appears to indicate a substantial

performance advantage for the CM-2 for all problem sizes and both types of grids.

Once again, careful examination of the text accompanying this plot places these results

in a different light. First of all, the author admits that his CM-2 results have been linearly

extrapolated to a 64K system from a smaller system. The author then explains that the

Cray version of the unstructured grid code is "unvectorized".

An additional difficulty with this plot can be seen by carefully examining the two Cray

curves. In the original, as in Figure 2, these are precisely straight lines. Needless to say,

it is exceedingly unlikely that a Cray code, scaled over nearly three orders magnitude in

problem size, exhibits precisely linear timings. Thus one has to suspect that the two Cray

"curves" are simply linear extrapolations from single data points. In summary, it appears

that of all points on four curves in this plot, at most two points represent real timings.

The author of this article does not mention the precision of the data used in the CM-2

version, but from his description of the CM-2 as having 32-bit floating point hardware, it

appears that the author is comparing a 32-bit CM-2 code with a 64-bit X-MP code.

4. Tuning

The previous two examples, in addition to their potentially misleading usage of graphi-

cal information, are examples of where performance comparisons are made based on some-

O

o

¢o
O_

eL

o

10 3

10.1 a_.....
103

:o2 '_ t
F

:o' i . :

' i
loo 1- : i

t F.... 1
,; -..... _ 4
L " t

2
104 105 lO 6 10 7

Number of Grid Cells

Figure 2: Timings of CM-2 (solid and dashes) and Cray X-MP (dash-dots and dots) on a

fluid dynamics application

thing lessthan comparabletuning efforts. In somecasesthis may happenbecausethe
implementorsof parallelcodesareexpertsoll a particular parallelsystem,but they donot
havea greatdealof experienceprogrammingthe other system(usuallya vectorsystem)
that they are comparing against.

For those of us who have significant experience programming both Cray-class vector

multiprocessors and the various highly parallel systems, it is pretty clear which are easier

to use at this point in time, both for initially implementing an application and for tuning

to obtain full performance. Indeed, the difficulty of programming and tuning codes on

highly parallel systems is currently an obstacle to more widespread usage. It has been

my personal experience that even for applications that are a challenge to vectorize, it is

still easier to program and tune them on a single processor of a Cray system than on a

highly parallel distributed memory system. This assessment does not substantially change

when one includes the additional effort required to utilize autotasking (multiprocessing)

on Crays.

Thus one has to be skeptical of instances in the literature where an application has been

ported and tuned on a highly parallel computer, usually requiring months of effort, and yet

the corresponding Cray code exhibits poor performance, typical of a code that is not even

vectorized, much less parallelized. One example of a performance comparison of this sort

is in [15]. In this paper, the performance of a code fragment is listed as 18 megaflops on

a Cray-2, but the translated code is claimed to run at 741 megaflops on the CM-2. First

of all, one can question whether this is a fair comparison, since the Cray-2 performance

was for a 16 x 16 x 32 problem, whereas the CM-2 performance was for a 64 x 64 x 64

problem. Also, as in the previous example, it is clear that the author is comparing a 32-bit

code on the CM-2 with a 64-bit code on the Cray-2. Further, only one processor of the

four-processor Cray-2 is being utilized.

The tuning problem in this paper is evident when one studies the Cray-2 Fortran code

fragment that is the basis of this comparison. This code fragment (with minor changes)

is shown in Figure .3. The performance of this code on the Cray-2 at NASA Ames is not

as low as the author of this article reported -- evidently the author's timing was based on

an earlier version of the Cray-2 compiler. But it is not hard to see that without special

compiler trickery, the performance of this code will be quite poor, since the inner loop

vector length is only 16.

Figure 4 contains an equivalent fragment of code, but with the three dimensions of the

various arrays collapsed to a single dimension. This tuned code runs on the NASA Ames

Cray-2 at 160 megaflops. It is impossible to know how fast this tuned code would have

run when the author wrote his article, but it is certain that it would have run much faster

than 18 megaflops. It is regrettable that such material appeared in a published conference

proceedings. Fortunately, however, the above-mentioned code fragment and performance

comparison was omitted when the paper was subsequently republished as a journal article.

Another apparent example of this type of potentially misleading material can be seen

in [16]. This paper compares the performance of a physics application running on several

systems, including a 16K CM-2 and a Cray X-MP/14. A substantial effort was made to

parameter (nx = 16, ny = 16, nz = 32)

common /com/ a(_x,ny,nz), gv(nx,ny,nz), t(nx,ny,nz), d(nx,ny,nz),

$ gr(nx,ny,nz), gi(nx,ny,nz)

do 120 kz = i, nz

do 110 jy = 1, ny

do I00 ix = I, nx

t(ix,jy,kz) = a(ix,jy,kz) / gv(ix,jy,kz)

d(ix,jy,k::) = gr(ix,jy,kz) / gi(ix,jy,kz)

$ / gv (i_,jy,kz)

i00 continue

ii0 continue

120 continue

Figure 3: Original Cray-2 code fragment

c

100

parameter (nx = J6, ny = 16, nz = 32, nn = nx * ny * nz)

common /com/ al(rn), gvl(nn), tl(nn), dl(nn), grl(nn), gil(nn)

do I00 i = I, nn

tl(i) = al(i) / gv1(i)

dl(i) = grl(i) / (gi1(i) * gv1(i))

continue

Fi_gure 4: Tuned Cray-2 code fragment

tune the CM-2 code, including calls to low-level PARIS routines. The resulting CM-2

implementation runs at 126 megaflops, much faster than the 3.1 megaflops achieved on the

Cray. The author explains that the reason for the poor performance on the Cray X-MP is

that two key phases of this calculation "do not vectorize".

However, the reader is struck by the fact that both the Cray and the CM-2 can be

thought of as SIMD processors. A code that has been implemented efficiently on a CM-2

should be directly translatable to a efficient vectorizable code on the Cray. An excellent

demonstration of this principle can be found in [I0], where three applications that had

been programmed and tuned on the CM-2 were ported back to the Cray Y-MP with high

performance.

Thus the reader of [16] is left to wonder why, if the CM-2 code for this application runs

so well, did the author not try to adapt the CM-2 code to the X-MP? Since one of the

author's CM-2 codes was written entirely in CM Fortran (i.e. Fortran-90 with directives),

why did the author not try simply running this same code on the X-MP? After all, the

Cray Fortran compiler now accepts many of the Fortran-90 array constructs.

5. Projections and Extrapolations

The practice of citing estimated and extrapolated performance results is, unfortunately,

fairly widespread in the field. This may in part be an unintended consequence of limited

research budgets at many research labs, where scientists often have to settle for scaled-down

versions of highly parallel systems. As a result, researchers frequently cite performance

results that are merely linear projections fi'om much smaller systems, often without the

slightest justification.

The practice of linearly extrapolating one's performance results to a larger system is

doubly perplexing because the question of whether various computer designs and applica-

tions will "scale" is in fact an important topic of current research. It seems that many

scientists using parallel computers are willing to assume as an established fact one of the

most fundamental questions in the field[

We have already seen one instance of citing extrapolated results. Another example is

[19], where the authors compare their defense application running on an nCUBE-2 with

comparable codes running on a Cray Y-MP and a CM-2. Three tables of timings are

included in this paper. Fortunately, all of the nCUBE-2 timings in the three tables are real

timings. But out of a total of 33 figures listed for the Y-MP and CM-2, more than half (17)

are merely projections or estimates. There does not appear to be any attempt to mislead

the reader, since the authors indicate which figures in each table are projections by means

of asterisks. Nonetheless, one is left to wonder about how reliable these comparisons are,

and whether they will always be quoted with the appropriate disclaimer.

rn most cases authors clearly disclose estimates and projections, but not always. In

[17], the author gives performance results for his fluid dynamics code in a table at the
end of the article. Timings are included for an 8K CM-2, a 16K CM-2 and a 64K CM-2.

Curiously, the timings for the 64K system have parentheses around them, but nowhere in

the text does the author state the meaning of these parentheses. However, by noting that

10

this columnof numbers s identical to the 16K numbers, shifted down by one, one has to

conclude that the 64K numbers are merely linear projections from the 16K results.

Some authors have taken the practice of citing projections one step further. In [18]

the author states in his abstract that his code runs "at the speed of a single processor of

a Cray-2 oi1 1/4 of a CM-2". Some thirteen pages later, the author cites a timing on a

Convex C210 and then states "experience indicates that for a wide range of problems, a

C210 is about 1/4 the sp,_ed of a single processor Cray-2". No further mention is made of

the Cray-2.

It is well known that for both the Convex C210 and the Cray-2, timings and megaflops

rates can vary dramatic_dly depending on the level of vectorization, inner loop vector

lengths, compute-to-memory reference ratios, compiler features and other factors. Thus

any blanket performance ratio such as 1/4 is rather dubious. But the most troubling

item here is the fact that the author, in the abstract of his paper, implies a performance

comparison with a Cray-2, even though he evidently has never run his code on a Cray-2.

6. Counting Flops

A common practice in the field of scientific computing is to cite performance rates in

terms of millions of floating point operations per second (megaflops). For various reasons,

some in the field have sug,;ested that the practice of citing megaflops rates be abandoned.

However, I am of the opinion that while direct timing comparisons are always preferred,

megaflops rates may be cited if calculated and reported consistently.

Megaflops figures may" of course be misleading, particularly on parallel computers. This

confusion derives from the method used to determine the number of floating point oper-

ations (flops) performed. Many authors count the number of flops actually performed in

their parallel implementati.)ns, a number usually obtained by analyzing the parallel source

code. Megaflops figures computed in this manner may be used, for example, to indicate

the extent to which the pe_k processing power of the computer system is being utilized.

However, parallel imple_nentations almost always perform significantly more flops than

serial implementations. Fo: example, some calculations are merely repeated in each pro-

cessor. Using the actual n nnber of flops performed on a parallel computer thus results

in megaflops rates that are inflated when compared to rates obtained fi'om corresponding

serial or vector computer implementations.

Another difficulty with l,asing megaflops rates on the actual parallel flop count is that

this practice tacitly encouratges scientists to employ numerically inefficient algorithms in

their applications, algorithms often chosen mainly for the convenience of the particular

architecture being used. It is easy to understand how such choices can be made, since it is

widely accepted in the field that algorithmic changes are often necessary when porting a

code to a parallel computer But when this practice is carried too far, both the audience

and the scientist may be mMead.

Because of the potential/or misleading comparisons of megaflops figures, it is clear that

a single standard flop count s!muld be used when comparing rates for a given application. In

my view, the most sensible flop count for this purpose is the minimal flop count -- the value

ll

Solver
Algorithm
Jacobi
Gauss-Seidel
LeastSquares
Multigrid

Floating Point
Operations
3.82x 1012
1.21x 10_2
2.59x i011

2.13 x 1009

CPU Time

(Sees.)
2124

885

185

6.7

Parallel

megattops

1800

1365

1400

318

BPSA

megaflops
1.00

2.41

11.51

318.00

Table 2: Parallel megaflops rates versus BPSA megaflops rates

based oi1 an efficient implementation of the best practical serial algorithms. In this way,

one is free to use an implementation with a higher flop count oll a particular architecture

if desired, but no extra credit is given for these extra operations when megaflops rates are

computed. This standard also acts as a deterrent to the usage of numerically inefficient

algorithms.

I have seen definite instances of inflated flop counts in papers I have read and in tech-

nical presentations I have attended, but it has been difl]cult to find clear-cut examples in

published literature that are understandable to a general audience. Rather than cite ex-

amples of this type, I wish to cite instead some legitimate published results that emphasize

the distinction between "parallel" megaflops rates (i.e. megaflops rates based on the actual

number of flops performed on the parallel system) and what I will term "BPSA megaflops"

(i.e. megaflops rates based on the flop count of the "best practical serial algorithms").

The first paper contains an interesting comparison of several different numerical schemes

that can be used to solve a convection-diffusion problem [12]. Based on the authors' data,

I have computed both parallel megaflops rates and BPSA megaflops rates for four of these

schemes. These figures are shown in Table 2. The BPSA megaflops rates are based on the

flop count of the multigrid algorithm.

When one looks at the column of parallel megaflops figures, it appears that the Jacobi

scheme is the fastest, with a performance rate of 1800 megaflops. The other schemes are

slower, and the multigrid scheme, at only 318 megaflops, is the slowest of all. However,

when one examines the BPSA megaflops column, then a very different picture emerges:

the Jacobi scheme is the worst, and the multigrid scheme is the best. Thus while the

parallel megaflops figures may provide some useful information, it is clear that the BPSA

megaflops figures are more meaningful when comparing computational performance.

Another article that emphasizes this same point is [8], where the authors of the Slalom

benchmark describe Bjorstad and Boman's discovery. These two scientists found that a

preconditioned conjugate gradient method could be used to produce the required solution

of the Slalom benchmark in much fewer flops than the scheme previously used, albeit at a

lower megaflops rate on many systems.

Admittedly, it may be a challenge to determine the minimal (i.e. BPSA) flop count

for a given problem. However, at the least a scientist should be expected to analyze the

12

sourcecodeof an efficient implementationo11a serial or vector computer. Thosewith
accessto a NEC SX systemor to a CrayX-MP/Y-MP systemcan take advantageof the
hardwareperformancemonitorspresenton thesecomputersto obtain accurateflop counts.
However,onemuststill becarefulto insurethat thecodebeingmeasuredby the hardware
performancemonitor employsthe bestavailablealgorithmsand is well optimized.

Along this line, perhapsthoseof usperformingresearchin the areaof numericallin-
earalgebrashouldat somepoint reconsiderthe usageof classicalformulasfor flop counts
in favor of flop countsb_sedon implementationsthat employ Strassen'salgorithm [2].
$trassen'salgorithm is a schemeto multiply matricesthat requiresfewer floating point
operationsthan the conventionalscheme.It hasbeendemonstratedthat Strassen'salgo-
rithm is now practical a1:din fact producesreal speedupsfor matriceswith dimensions
larger than about 128[2]. Further, Strassen'salgorithm can beemployedto acceleratea
varietyof linearalgebracalculations[3,9]by substituting a Strassen-basedmatrix multiply
routinefor the conventionalmatrix multiply routine in a LAPACK [1] implementation. If
a Strassen-basedflop countwereadoptedfor computingthe megaflopsrate in the solution
of a 16,000x 16,000linear system,the resulting rate wouldhaveto be cut by roughly
one-third from the usualreckoning.

In this vein, I myselfmustconfessto citing potentially misleadingperformancefigures
in [3]. Thesearticles includeoneprocessorCray-2and Y-MP performancerates for some
Strassenmatrix routines. Followingestablishedcustom,my co-authorsand I computed
megaflopsratesbasedon the classicalflopcount for matrix multiplication (2n3). But since
the Strassenroutinescan producethe matrix product in fewerflops, it could be argued
that these megaflops figures are inflated.

7. Other Issues

Many authors report "speedup" figures for their parallel applications. Such figures indi-

cate the degree to which tl:e given application "scales" on a particular architecture. How-

ever, here also there is pot.mtial for the audience to be mislead, especially when speedup

figures are based on inflated single processor timings.

For example, users of the Intel iPSC and other message passing systems often base

speedup figures on a single node timing of the multiple node version of the program (for

example, in [20]). When running on a single node, the multiple node program needlessly

synchronizes with itself and passes messages to itself. These "messages" are handled quite

rapidly, since the operating system recognizes that these are local transmissions. Nonethe-

less, a significant amount of overhead is still required, and it is not unusual for the single

node run time to increase bi_"20 percent with the addition of message passing code. There

is a similar potential for distortion when citing speedup figures for Cray multiprocessor

vector systems. Clearly speedup figures should be based instead on the timing of a well

optimized, purely single pro :essor program (i.e. a program without unnecessary multipro-

cessor constructs).

Some authors present "scaled speedup" figures, first introduced in [7], where the prob-

lem size is scaled up with the number of processors. Such figures may be informative, but

13

it is essentialthat authorswho quotesuchfiguresclearlydisclosethe fact that they have
scaledtheir problemsizeto match the processorcount. It is alsoimportant that. authors
providedetailsof exactlyhowthis scalingwasdone.

Anotheraspectof performancereportingthat needsto becarefullyanalyzedishowthe
authorsmeasurerun time. Mostof the scientistsI havequeriedabout this issuefeelthat
elapsedwall clock time is the most reliablemeasureof run time, and that if possibleit
shouldbemeasuredin a dedicatedenvironment.By contrast,CPU time figures,suchas
thosefrequentlyquotedby usersof Craysystems,may maskextra elapsedtime required
for input and output. Also, it is knownthat on the CM-2, "CM BusyTime" and "CM
ElapsedTime" are quite different for somecodes,evenwith no I/O and 11oother users
sharingthe partition. This canbe seenin [4,6].

One final aspectof performancereporting is the sourceof untold confusionin the
supercomputingfield: are the resultsfor 32-bit or 64-bit floatingpoint arithmetic? Since
onmanysystems,32-bit computationalperformanceratesarenearlytwiceashighas64-bit
rates,thereis a temptationfor authorsto quoteonly 32-bit results,to fail to disclosethat
ratesarefor 32-bit data,and to comparetheir 32-bit resultswith others'64-bit results. It
is clearthat 32-bit/64-bit confusionis widespreadin performancereporting,sincewehave
seenseveralexamplesalready.

In my view, quoting 32-bit performancerates is permissibleso long as (1) this data
typeis clearlydisclosedand(2) abrief statementis includedexplainingwhy this precision
is sufficient. Along this line, it shouldbekept in mind that with new computersystems
it is now possibleto attempt much largerproblemsthan before. As a result, numerical
issuesthat.previouslywerenot significantnow aresignificant,and someprogrammersare
discoveringto their dismaythat higherprecisionis necessaryto obtain meaningfulresults.

I suspectthat in the majority of caseswherethe authors do not clearly state the
data type, the resultsare indeedfor 32-bit data. Oneexampleof this is [21],wherein
an otherwiseexcellentten-pagepaper, the authors neverstate whether their impressive
performancerates arefor 32-bit or 64-bit calculations,at leastnot in aalyplacewherea
readerwouldnormally look for suchinformation. That.their resultsare indeedfor 32-bit
datacanhoweverbe deducedby a carefulreadingof their sectiononmemorybandwidth,
wherewereadthat operandsare four bytes long.

8. Responsibility
It is most likely true that noneof the authors cited abovedeliberately intendedto

misleadtheir audiences.After all, in mostcasesthe potentiallymisleadingaspectsof these
paperswereevidentonly becauseof detailedinformationincludedin the text of the paper.
It is also likely that in at least somecases,the authors' performanceclaims might be
largelyupheldif thefull factswereknown. Nonetheless,the overridingimpressionof these
examplesis that whateverthe motivesand actualfactsmay"be, the material aspresented
generallygivesthe appearanceof inflating the authors' performanceresultsin comparison
to other systems.Suchmaterialcertainly hasthe potential to misleadan audience.And;
at the very least,onecanarguethat thesepapersrepresentsloppyscience.

14

Who is to blame7 As I stated in section 2, it is not my opinion that the blame lies

solely with the individual authors. Any scientist can write a paper that is not thoroughly

sound -- it is the duty of his or her colleagues and professional organizations to insure that

questionable aspects of the paper are corrected before publication or public presentation.

For example, in the abow__ cited examples, these results were ahnost certainly presented to

colleagues at the respect:re institutions, and in most cases the manuscripts were read by

colleagues before the aut!_ors submitted them for outside publication. More significantly,

these manuscripts were il all but four cases formally refereed by fellow professionals in the

field. The four conferenc_ papers that were were not formally refereed were informally ref-

ereed by committee mere _ers of major conferences, who are generally prominent scientists

in the supercomputer fielc. Thus whatever "blame" is to be assigned must be shared rather

widely. Furthermore, how can these authors be accused of violating the "rules" when we

have never established anj standards for reporting performance?

9. Proposed Guidelines

Clearly this field needs a detailed set of guidelines for reporting supercomputer per-

formance, guidelines which are formally adopted and widely disseminated to authors and

reviewers. Virtually every field of science has found it necessary at some point to estab-

lish rigorous standards for the reporting of experimental results, and ours should be no

exception. To that end, I propose the following. These guidelines focus on computational

performance, since that is the topic of this paper and apparently the most frequent arena

of confusion. However, it i,'. hoped that the spirit of these guidelines will be followed by re-

searchers reporting perforntance in other areas of supercomputers, such as in mass storage
and local area networks.

. If results are presented for a well-known benchmark, comparative figures should be

truly comparable, and the rules for the particular benchmark should be followed. For

example, Linpack 1000 results should not be compared against Linpack 100 results.

. Only actual performance rates should be presented, not projections or extrapola-

tions. For example, Ferformance rates should not be extrapolated to a full system

from a scaled-down system. Comparing extrapolated figures with actual performance

figures, such as by including both in the same table, is particularly inappropriate.

. Comparative performance figures should be based on comparable levels of tuning. For

example, results tuned with months of effort on one system should not be directly

compared with results on a well-known vector system where no attempt has been

made to even fully vectorize the code.

o Direct comparisons of run times are preferred to comparisons of megaflops rates or the

like. Whenever possib;e, timings should be true elapsed time-of-day measurements

(this might not be pos_,ible in some "production" environments).

5. Megaflops figures should not be presented for any comparative purpose unless they

are computed from col sistent flop counts, preferably flop counts based on efficient

15

implementationsof the bestpractical serialalgorithms. Oneintent here is to dis-
couragethe usageof numericallyinefficientalgorithms,whichmayexhibit artificially
highperformancerateson a particular parallelsystem.

6. If speedupfigures are presented,the singleprocessorrate shouldbe basedon a
reasonablywell tuned programwithout multiprocessingconstructs. If the problem

size is scaled up with the number of processors, then the results should be clearly

cited as "scaled speedup" figures, and details should be given explaining how the

problem was scaled up in size.

7. Any ancillary information that would significantly affect the interpretation of the

performance results should be fully disclosed. For example, if the results are for

32-bit rather than for 64-bit data, or if assembly-level coding was employed, or if

only one processor of a conventional system is being used for comparison, these facts

should be clearly stated.

8. Due to the natural prominence of abstracts, figures and tables, special care should

be taken to insure that these items are not misleading, even if presented alone. For

example, if significant performance claims are made in the abstract of the paper, any

important qualifying information should also be included in the abstract.

9. Whenever possible, the following should be included in the text of the paper: the

hardware, software and system environment; the language, algorithms, the datatypes

and programming techniques employed; the nature and extent of tuning performed;

and the basis for timings, flop counts and speedup figures. The goal here is to enable

other scientists to accurately reproduce the performance results presented in the

paper.

I am not presenting these guidelines as mandatory, inflexible requirements. Clearly

in a fast-moving field such as ours, it would be unwise to do so. However, if a paper or

presentation does present results that significantly deviate from these guidelines, I suggest

that the author has an obligation to clearly state and justify these deviations.

10. Conclusions

The examples I have cited above are somewhat isolated in the literature, and I see no

evidence that the problem of inflated performance reporting is out of control. However,

clearly those of us in the parallel supercomputing field would be wise to arrest any tendency

in this direction before we are faced with a significant credibility problem. As was men-

tioned above, scientists in many other disciplines have found it necessary to adopt rigorous

standards for reporting experimental results, and ours should be no exception. It is my

hope that this article, with the proposed guidelines in section 9, will stimulate awareness

and dialogue on the subject and will eventually lead to consensus and formal standards ill
the field.

16

Acknowledgments

I wish to acknowledgetile followingpersonswho haveprovidedvMuableinsight and
suggestions:R. Babb, E. Barszcz,S.Chatterjee, R. Fatoohi,S. Hammond,A. Karp, C.
Koebel,T. Lasinski, .l. McGraw, ,l. Riganati, R. Schreiber, M. Simmons, H. Simon, V.
Venkatakrishnan: S. Wee cat unga, and M. Zosel.

17

References

[1]

[2]

[3]

E. Anderson, Z. Bai, C. Bischof, J. Demmel, .1. Dongarra, J. DuCroz, A. Greenbaum,

S. Hammarling, A. McKenney, S. Ostrouchov and D. Sorenson. The LAPACK Users'

Guide, SIAM, Philadelphia, 1992.

D. H. Bailey, '_Extra-High Speed Matrix Multiplication on the Cray-2", SIAM Journal

on Scientific and Statistical Computh_g, vol. 9, no. 3, (May 1988), p. 603 - 607.

D. H. Bailey, K. Lee. and H. D. Simon, "Using Strassen's Algorithm to Accelerate the

Solution of Linear Systems", .lournal of Supercomputing, vol. 4., no. 4 (.Jan. 1991), p.
357 - 371.

[4] D. H. Bailey and P. O. Frederickson, "Performance Results for Two of the NAS Parallel

Benchmarks", Proceedings of,%percomputing '91, IEEE, Los Alamitos, CA, 1991, p.
166 - 163.

[5]

[6]

[7]

IS]

[9]

[10]

[11]

[12]

D. H. Bailey, "Twelve Ways to Fool the Masses When Giving Performance Results on

Parallel Computers", Supercomputing Revieu,, August 1991, p. 54 - 55. Also published

in Supercomputer, September 1991, p. 4 - 7.

M. Garbey and D. Levine, "Massively Parallel Computation of Conservation Laws",

Proceedings of the Fourth SIAM Conference on Parallel Processing for Scientific Com-

puting, SIAM, Philadelphia, PA 1990, p. 340 - 345.

J. Oustafson, G. R. Montry and R. E. Benner, "Development of Parallel Methods for

a 1024-Processor Hypercube", SIAM Journal on Scientific and Statistical Computing,

vol. 9, no. 4 (.July 1988), p. 609 -638.

.J. Gustafson, D. Rover, S. Elbert and M. Carter, "SLALOM: Surviving Adolescence"

Supercomputing Review, December 1991, p. 54 - 61.

N. J. Higham, "Exploiting Fast Matrix Multiplication Within the Level 3 BLAS"

ACM Transactions on Mathematical Software, vol. 16 (1990), p. 352 - 368.

O. M. Lubeck, M. L. Simmons and H..I. Wasserman, "The Performance Realities of

Massively Parallel Processors: A Case Study", Proceedings of.%percomputing '92, to

appear.

J. Markoff, _'Measuring How Fast Computers Really Are", New Ybr_t.-Times, Septem-

ber 22, 1991, p. 14F.

J. N. Shadid and R. S. Tuminaro, "It erative Methods for Nonsymmetric Systems on

MIMD Machines", Proceedings of the Fifth SIAM Conference on Parallel Processing

for Scientific Computing, SIAM, Philadelphia, 1992, to appear.

18

(13] PaperA.

[1,'1]PaperB.

flS] Paper C.

[16] Paper D.

[17] Paper E.

I18] Paper F.

£19J Paper G.

I20] Paper H.

[21] Paper I.

19

